École Polytechnique Fédérale de Lausanne Distributed Electrical Systems Laboratory EPFL-STI-DESL-ELL, Station 11, CH-1015 Lausanne

http://desl-pwrs.epfl.ch

Student project proposal

Project title			
Cont	trol Algorithm Desig	gn for Electromagnetic Levita	ation of a Hyperloop Pod
Project type	MSc thesis ■	BA semester project	MSc semester project
Project respons	sible and e-mail		
Lucien Pierr	ejean – <u>lucien.pierreje</u>	ean@epfl.ch	

Project description

The proposed project is part of the epfloop team's research into the electrification of transport, and more specifically into the propulsion of high-speed levitated vehicles (named pods).

The goal of the project is to design, implement, and test a control algorithm for the electromagnetic levitation system of a Hyperloop pod. The levitation is based on the electromagnetic attraction between two magnetised components, resulting in a highly nonlinear system that requires precise control to maintain stability.

The control algorithm should be capable of stabilizing the pod in mid-air and tracking a desired trajectory. The final phase of the project involves implementing the controller on a real prototype and validating its performance through real-time testing.

Tasks of the student

- Become familiar with the levitation units of the Hyperloop pod.
- Review existing control strategies for electromagnetic levitation systems.
- Model the mechanical and electrical behaviour of the system.
- Derive the open loop transfer function in the Laplace domain.
- Design and tune a suitable control algorithm.
- Implement and test the controller in Simulink (or an equivalent simulation environment).
- Deploy the algorithm on the prototype and conduct real-time levitation experiments.

Requirements

- Background on control theory.
- Proficiency in programming languages (MATLAB Simulink, LabVIEW is a real plus).
- Basic knowledge in electronics and embedded systems.

This project offers the opportunity to combine theoretical control design with hands-on experimentation on a real prototype.

Literature

[1] S. Rametti, L. Pierrejean, A. Hodder, and M. Paolone, 'Decoupled Levitation and Propulsion Control of Single-Sided Linear Induction Motors', in 2024 IEEE International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles & International Transportation Electrification Conference (ESARS-ITEC), Naples, Italy: IEEE, Nov. 2024, pp. 1–6. doi: 10.1109/ESARS-ITEC60450.2024.10819927.